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Topology of potential hypersurfaces of two, three and four
dipoles interacting at long distances
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The whole sets of critical points of analytical functions corresponding to the long-range
two-body interaction between two, three and four dipole vectors set at the vertices of several
polygons are determined using topology theorems. Betti numbers associated to the configu-
ration spaces are first obtained, then stationary points are located via an analytical gradient
method till the Morse inequalities are checked.

1. Introduction

Theoretical study of intermolecular systems has been growing in recent years
[1,2,4,7,9,14,16], a good knowledge of molecule interactions being of fundamental
importance to understand quantum tunneling dynamics that occur in hydrogen-bonded
systems, hydration of biochemical systems or properties in crystals, for example.

For van der Waals systems, the intermolecular surfaces are very flat and the whole
set of minima and transition states is necessary to understand molecular rearrangements.
The search for these numerous stationary points is a not trivial task; fortunately, the
Morse theory provides a powerful framework for rationalization of numerical results
[5,8,10]. In preceding works [6,12,13], we stressed the topology of the whole potential
function of 3N coordinates for molecules or clusters with a small number N of atoms.
We found that highly symmetric configurations (D∞h,D3h,D4h,Td, . . .) were compul-
sorily present on these hypersurfaces. In this work, atoms are fixed at the vertices of
these crucial polygons and they are replaced by dipoles describing identical molecular
fragments of a supersystem like (CO)N . Inter-dipole distances are supposed to be
large and rigid so that only the direction (θi,φi) of each dipole vector subtending a
spherical space can vary. This supposes that we study the configuration (θi,φi)-space
at the minimum of the electronic potential surface with respect to the hyper-radius of
the supersystem and that each dipole takes directions set by the dipole–dipole van der
Waals interaction.

The sets of Betti numbers corresponding to such topological spaces are given in
section 2. Applications on two, three and four dipoles are studied in section 3.
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2. Morse inequalities

Let (θi,φi) be the spherical coordinates corresponding to the direction of one
dipole vector ~di. The topological space subtended by these coordinates is the sphere
S2 with Poincaré polynomial series (1 + t2) yielding the well-known Betti numbers
(1,0,1) [3,15]. For N vectors, the whole configuration space is a space product of
N spherical spaces S2. The Betti numbers are determined via either the Kunneth’s
formula [3,15] or from the coefficients of the series (1 + t2)N . For a Morse function
with Mn the number of critical points Cn whith index n (the number of negative
eigenvalues of the Hessian matrix), we can write

2N∑
n=0

Mnt
n =

(
1 + t2

)N
+ (1 + t)Q(t), (1)

where Q(t) is a polynomial function with non-negative coefficients. This equation
leads to the Morse inequalities with a final equality for n = 2N .

However, when the interacting dipoles (or vectors) have their fixed origins in a
straight line D, the potential function becomes invariant with respect to any rotation
around D. The potential is no longer a Morse function as the critical “points” belong
to actual critical orbits. The configuration space of interest becomes the quotient of
S2N by the rotation group SO(1). The space S2N/SO(1) fails to be a manifold, the
action of the rotation on S2N being not free at those configurations for which the
N vectors are all collinear to D. Basic Morse theory applies onto manifolds only
([10, chapter V]), however the equivariant version of the Morse theory holds [11] and
equation (1) is replaced with

2N∑
n=0

Mnt
n +

2N∑
n=0

mnt
n

1− t2 =
(1 + t2)N

1− t2 + (1 + t)Q(t), (2)

where mn is the number of these linear configurations, and where 1/(1 − t2) arises
from the action of SO(1).

In the following, the equivalent geometric configurations for a critical point
(θ1,φ1, . . . , θN ,φN ) must be enumerated to evaluate Mn (and mn). The N origins
of the vectors being fixed, the maximum number of equivalent critical points when
permuting and changing the sign of the dipoles, is equal to two times the number of
symmetry operators in the group formed by their connections. This result is to be
divided by the number of inactive symmetry operators on the whole set of N vectors
to within the global sign. For example in a D3h symmetry group, a maximum of 24
(2×12) equivalent critical points can be found. But the whole set of vectors belonging
also to a symmetry group, we have to divide 24 by the corresponding number of sym-
metry operators: in the case of critical points for which all the vectors are orthogonal
to the D3h plane, this number is 12 (E, 2C3, 3C2,σh, 2S3, 3σv) if the three vectors at
the triangle vertices are in phase, or 4 (E,C2,σh,σv) for opposite phases. This ends on
a number of equivalent configurations equal to 2 and 6, respectively. For “collinear”
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configurations where the vector connections are aligned, this rule holds by using an
abelian subgroup of D∞h (e.g., D2h).

A locus of interest in the configuration space is the ensemble of the “planar
configurations” where the dipole connections lie in a plane and each dipole belongs
to the same plane. This locus is a symmetry cross-section of the configuration space
(ponctual group Cs), spanned by the φi-coordinates only (θi = ±π/2) by choosing
z-axis perpendicular to the Cs plane. The homology of this cross-section is a product
of one-dimensional S1 spheres, therefore Morse inequalities for planar configurations
are obtained from the following relationship:

N∑
n=0

M ′nt
n = (1 + t)N + (1 + t)Q(t). (3)

Equation (3) is not part of equation (1) or (2). The corresponding set of Morse
inequalities is also of interest to check the topological consistency of numerical results.

3. Application to the dipole–dipole interaction potential

(θi,φi) and (θj ,φj) being spherical angles describing the orientation of two
dipoles ~di and ~dj separated by a distance Rij in a given orthogonal reference frame,
the dipole–dipole interaction V (i, j) between them reads

V (i, j) =
−2 cosαij cos βij + sinαij sinβij cos γij

R3
ij

, (4)

where αij (βij) is the angle between ~di (~dj) and the connection vector ~Rij , and where
γij is the dihedral angle (~di, ~Rij , ~dj).

For additive two-body long-range potentials, the total energy V (θ1,φ1, . . . ,
θN ,φN ) is equal to the sum

∑
i>j V (i, j).

This potential function turns out to be smooth everywhere. As a consequence,
the Morse theory holds provided that the function does not exhibit degenerate critical
values (critical points with at least one Hessian eigenvalue equal to zero).

The potential function V , its gradient and the Hessian matrix have been obtained
analytically by the formal calculation software Mathematica [17]. The stationary points
were found by a pseudo-Newton gradient method starting from numerous trial guess,
and the index of the Hessian has been collected systematically.

3.1. Interaction between two dipoles

Only four critical points summarize this trivial potential function:

– two critical points correspond to parallel and antiparallel dipoles, themselves per-
pendicular to the straight line D (chosen as z-axis) connecting their origin. The
corresponding energies are equal to +1 and −1 (hartree) for an inter-dipole R
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distance equal to 1 (bohr). In the two-dimensional (θ1, θ2)-space (φ1 = φ2 = 0,
for example), their indices are both equal to 1 and the number of equivalent con-
figurations is 2 for each of them, the rotation around D being forbidden. In the
four-dimensional (θ1, θ2,φ1,φ2)-space divided by the SO(1) group, their indices are
equal to 2 (parallel dipoles) and 1 (anti-parallel dipoles) and their symmetry number
is 1 (instead of 2);

– the two other critical points correspond to dipoles parallel to D. The associated en-
ergies are −2 and +2 depending on whether the vectors are parallel or anti-parallel.
In the two-dimensional (θ1, θ2)-space, their indices are 0 and 2, respectively, while
they are twice larger (then equal to 0 and 4) in the whole configuration space be-
cause of the twofold degeneracy of the curvatures in the direction perpendicular
to D. In both spaces, their symmetry number is equal to 2.

Collecting, we have

M ′0 = 2, M ′1 = 2 + 2, M ′2 = 2 in the two-dimensional space,

M0 = 0, M1 = 1, M2 = 1, M3 = 0, M4 = 0, m0 = 2, m1 = 0, m2 = 0,

m3 = 0 and m4 = 2 in the whole configuration space,

in full agreement with equations (3) and (2) for N = 2 (in the present case, the
connections of the dipoles are aligned and equation (1) cannot be used).

3.2. Interaction between three dipoles

In a previous work [12], we have introduced a measure of “complexity” of a
potential function in terms of the number of critical points exceeding the smallest
number consistent with the Morse inequalities and the symmetry (in a non-rigid sense)
of the problem. The “simplest” potential function for a cluster A3 of three equivalent
atoms A do have only two critical points, one with the symmetry D∞h the other
with the symmetry D3h. In the present study, each atom A in both D∞h and D3h

configurations is replaced with a dipole vector, the inter-dipole distances being kept
constant. The orientations of the three dipoles are free and the main properties of the
potential function are summarized by its critical points.

D∞h: from equation (2) with N = 3, the Morse inequalities are

M0 +m0 > 1,

M1 −M0 +m1 −m0 >−1,

M2 −M1 +M0 +m2 −m1 + 2m0 > 5,

M3 −M2 +M1 −M0 +m3 −m2 + 2m1 − 2m0 >−5,

M4 −M3 +M2 −M1 +M0 +m4 −m3 + 2m2 − 2m1 + 3m0 > 12,

M5 −M4 +M3 −M2 +M1 −M0 +m5 −m4 + 2m3 − 2m2 + 3m1 − 3m0 >−12,

M6 −M5 +M4 −M3 +M2 −M1 +M0 +m6 −m5 + 2m4 − 2m3 + 3m2

− 3m1 + 4m0 > 20,
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Table 1
Spherical coordinates of the critical points found for three dipoles
with the D∞h connection (z is the D∞h axis). The energy value is
to be divided by R3, R being the distance between two neighbouring
dipoles. Cn and cn point out non-linear and linear critical points with
index n in the whole configuration space. In parenthesis, the number

of equivalent configurations.

θ1 φ1 θ2 φ2 θ3 φ3 Index Energy

0 0 0 0 0 0 c0 (2) −4.25
π/2 0 −π/2 0 π/2 0 C1 (1) −1.875
π/2 0 π/2 0 −π/2 0 C2 (2) −0.125

0 0 0 0 π 0 c4 (4) 0.25
π/2 0 π/2 0 π/2 0 C4 (1) 2.125

0 0 π 0 0 0 c6 (2) 3.75

and the following equality holds:

m6 −m5 +m4 −m3 +m2 −m1 +m0 = 8.

All these conditions are achieved by the set of critical points found numerically
for V (θ1,φ1, θ2,φ2, θ3,φ3) and given in table 1. More precisely, M0 = 0, M1 = 1,
M2 = 2, M3 = 0, M4 = 1, M5 = M6 = 0, m0 = 2, m1 = 0, m2 = 0, m3 = 0,
m4 = 4, m5 = 0 and m6 = 2.

All the critical points found on the hypersurface have their dipole vectors either
all parallel or all perpendicular to the D∞h axis. In the water trimer studied by Mó
et al. [9] at different levels of calculation, some of these critical points are effectively
obtained but among many other ones, showing that a multipole expansion of the
potential beyond the dipole–dipole interaction is necessary in that case.

D3h: the set of critical points is reported in table 2 and pictured in figure 1.
Collecting, it is found that M0 = 2, M1 = 12, M2 = 18, M3 = 6, M4 = 6, M5 = 2
and M6 = 2, in agreement with the Morse inequalities (equation (1) with N = 3):

M0 > 1,

M1 −M0 >−1,

M2 −M1 +M0 > 4,

M3 −M2 +M1 −M0 >−4,

M4 −M3 +M2 −M1 +M0 > 7,

M5 −M4 +M3 −M2 +M1 −M0 >−7,

M6 −M5 +M4 −M3 +M2 −M1 +M0 = 8.

Two non-trivial critical points with low symmetry and with a symmetry number
equal to 12 do exist on the potential surface. One of them is a transition state, and
thus of immediate chemical interest. The stable configuration C0 ressembles the one
reported by Mó et al. [9] (trimer 11) and by van Duijneveldt et al. [2] for the water



240 M. Rérat et al. / Topology of potential hypersurfaces

Table 2
Cn and C′n critical points found for three dipoles at the vertices (0,0,0),
(
√

3R/2,−R/2, 0) and (
√

3R/2,R/2, 0) of a R-side triangle, in the six (θi,φi) and
three (θi = π/2,φi) dimensional spaces, respectively. The energy value is to be
divided by R3. Angles are in radians. In parenthesis, the number of equivalent

configurations.

θ1 φ1 θ2 φ2 θ3 φ3 Index Energy

π/2 π/2 π/2 −5π/6 π/2 −π/6 C0 C
′
0 (2) −3.75

π/2 π π/2 2.588 π/2 −2.588 C2 C
′
1 (6) −2.22

π/2 π/2 π/2 0.109 π/2 π − 0.109 C4 C
′
2 (6) +1.63

π/2 0 π/2 2π/3 π/2 −2π/3 C6 C
′
3 (2) +5.25

0 0 0.864 2.536 π − 0.864 −2.536 C1 (12) −2.34

0.16 −π/2 1.911 −1.337 1.911 −π + 1.337 C2 (12) −2.29

0 0 π 0 π 0 C3 (6) −1.00

0 0 0 0 0 0 C5 (2) +3.00

Figure 1. Critical points Cn with index n found for three interacting dipoles at the top of an equilateral
R-side triangle. The energy value is to be divided by R3. In parenthesis, the number of equivalent

configurations.

trimer. The point stresses that, despite the lack of dipole–quadrupole interactions, our
asymptotic study can predict at least some of the critical points for actual potential
functions. It actually does generically, as long as no bifurcation occurs from higher
order contributions.

In table 2, are given the indices of the C ′n “planar” critical points (each value
for θi is π/2 and the space is spanned by φ1,φ2,φ3). Betti numbers for this cross-
section come from (1 + t)3, the three-dimensional torus, and lead to the following
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right-members in the Morse inequalities: (1,2,1,0). The actual numbers of “planar”
critical points (M ′0 = 2, M ′1 = 6, M ′2 = 6 and M ′3 = 2) match them:

M ′0 > 1,

M ′1 −M ′0 > 2,

M ′2 −M ′1 +M ′0 > 1,

M ′3 −M ′2 +M ′1 −M ′0 = 0.

3.3. Interaction between four dipoles

Four types of clusters have been studied. Betti numbers are found by developping
either (1 + t2)4/(1 − t2) or (1 + t2)4 according to the case where the connections of
the dipole vectors are aligned or not (see equations (1) and (2)). This leads to the
following right-members in the inequalities: (1,−1, 6,−6, 17,−17, 32,−32, 48) and
(1,−1, 5,−5, 11,−11, 15,−15, 16), respectively.

D∞h: as for the D∞h connections between three dipoles, the D∞h connec-
tion for four dipoles leads to critical points for which all the vectors are either par-
allel or perpendicular to the z-axis (connection axis). The corresponding cn and
Cn critical points with their symmetry number are as follows (parenthesized val-
ues are energies for each R-distance between neighbouring dipoles equal to one):
C1 = 1 (−2.79), C2 = 3 (−1.21), C4 = 3 (0.96), C6 = 1 (3.29), c0 = 2 (−6.57),
c4 = 6 (−1.93), c6 = 6 (1.93) and c8 = 2 (5.57). Thus, M0 = 0, M1 = 1, M2 = 3,
M3 = 0, M4 = 3, M5 = 0, M6 = 1, M7 = M8 = 0, m0 = 2, m1 = m2 = m3 = 0,
m4 = 6, m5 = 0, m6 = 6, m7 = 0 and m8 = 2; equation (2) is met for N = 4. It
may be pointed out that each of the left-members in the inequalities, except the first
one, equals the right-members, a strong evidence that the potential function is one of
the simplest ones.

D3h (table 3 and figure 2): the critical points have all their dipole vectors either
in the D3h plane (xy) or perpendicular to that plane. From the twelve critical config-
urations found, eight of them are “planar” (θi = π/2). The “planar” cross-section is
4-dimension, spanned by φ1, . . . ,φ4. We name C ′n the index of the 8 critical points
restricted within this subspace. The Betti numbers arise from N = 4 in equation (3),
delivering Morse inequalities with right members (1,3,3,1,0). In both spaces (4- and
8-dimensional, 8 and 12 critical points, respectively), equations (3) and (1) are met
with N = 4.

D4h: in table 4 are reported all the critical points found on the hypersurface.
Equations (1) and (3) for N = 4 are once more verified. However, unlike D3h case,
two configurations with low symmetry and for which dipole vectors are neither parallel
nor perpendicular to the D4h plane have been found (C3(16) and C5(16)).

Td: we report in table 5, the (θi,φi) dipole directions for each critical points,
the coordinates of their origin being (0,0,0), (

√
3R/2,−R/2, 0), (

√
3R/2,R/2, 0) and
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Table 3
Cn and C′n critical points found for four dipoles at the vertices (0,0,0), (

√
3R/2,−R/2, 0),

(
√

3R/2,R/2, 0), and at the center (
√

3R/3, 0, 0) of a R-side triangle, in the eight (θi,φi)
and four (θi = π/2,φi) dimensional spaces, respectively. The energy value is to be divided

by R3. Angles are in radians. In parenthesis, the number of equivalent configurations.

θ1 φ1 θ2 φ2 θ3 φ3 θ4 φ4 Index Energy

π/2 0 π/2 −1.578 π/2 1.578 π/2 0 C0 C
′
0 (6) −24.491

π/2 π/2 π/2 −0.946 π/2 −π + 0.946 π/2 −π/2 C1 C
′
1 (6) −24.173

π/2 π/2 π/2 2.433 π/2 π − 2.433 π/2 π/2 C2 C
′
1 (6) −16.579

π/2 0 π/2 1.063 π/2 −1.063 π/2 π C4 C
′
2 (6) 0.151

π/2 0 π/2 1.565 π/2 −1.565 π/2 0 C5 C
′
2 (6) 7.706

π/2 π/2 π/2 2.308 π/2 π − 2.308 π/2 −π/2 C6 C
′
3 (6) 10.572

π/2 π/2 π/2 −0.614 π/2 −π + 0.614 π/2 π/2 C7 C
′
3 (6) 24.218

π/2 0 π/2 −1.951 π/2 1.951 π/2 π C8 C
′
4 (6) 24.270

0 0 0 0 0 0 π 0 C2 (2) 3− 9
√

3

0 0 π 0 π 0 0 0 C3 (6) −1− 3
√

3

0 0 π 0 π 0 π 0 C4 (6) −1 + 3
√

3

0 0 0 0 0 0 0 0 C6 (2) 3 + 9
√

3

Figure 2. Critical points Cn found for four interacting dipoles at the top and the middle of an equilateral
R-side triangle. The energy value is to be divided by R3. In parenthesis, the number of equivalent

configurations.
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Figure 3. Two projections of the three different critical points with the same energy (Td connections).

(
√

3R/3, 0,
√

2/3R). Three close but unequivalent configurations1 have the same
energy (V = 1.000×R−3) and are almost degenerated (one or two Hessian eigenvalues
are close to zero) showing that the potential is very flat in this region (see figure 3).
The indices found for these critical points agree with the Morse inequalities, but the
absence of other critical points with lower symmetry cannot be ascertained numerically
in the same region.

Once again, some of our configurations can be found among the numerous sta-
tionary points obtained by Wales and Walsh for the water tetramer [16]. Particularly,
our C0 minimum for the D4h connections (table 4) is very similar to the planar C4h

critical point given in their work even if it is not the most stable configuration owing to
the use of a rigid monomer intermolecular potential with an anisotropic site potential
(ASP) form.

4. Conclusions

In this generic study of van der Waals systems, we stressed the advantages to
make use of topology theorems available in fully explicit form. The imbricated sets of
Morse inequalities are the key points to validate any numerical approach to the critical
points (except accidental pleats) on the potential hypersurface.

1 An efficient test that two configurations with the same energy are not equivalent is the projections of
the dipole vectors on each couple of connections: configurations are dissimilar if some absolute values
differ after possible permutations.
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Betti numbers are reported for the potential functions describing any set of N
monomers, provided the orientation of each monomer is specified by two angles only:
systems exactely linear (diatomics, acetylene [1], . . .) or assimilated (e.g., CH3CN up
to the quadrupole level of description). In the case of N identical monomers with a
permanent dipole, the asymptotic study of N interacting dipoles should be realistic
enough to locate the whole sets of critical points on actual van der Waals potential
surfaces, generally represented in the literature by only one or several minima and
saddle points. Surprisingly, the first term of a multipole expansion of the interaction
energy between three or four molecules immediately lead to a complex potential hy-
persurface: more than ten unequivalent critical points are found for four-body systems
in each non-linear geometry (D3h,D4h and Td). More, the surfaces of these van der
Waals supersystems are very flat: for example in the Td geometry, the energy range
between the critical points is 15 × 10−3 a.u. ' 3300 cm−1 for a R-side value equal
to 10 a.u. and for which the sole dipole–dipole interaction predominates (exchange
potential becoming insignificant beyond this R-value). For smaller distances, we can
expect that the subspaces of the N vector connections (D∞h,D3h,D4h,Td, . . .) remain
separated by high energy barriers so that the local studies still hold. That means also
there is no interpenetration of atoms between molecular fragments.

In the future, it would be interesting to analyse the topological bifurcations en-
countered by the potential function when a non-additive many-body intermolecular
potential is used like that one of McDowell [7] for the H2 trimer. More, to study
the hypersurface of H2O clusters as in [9,16], dipole–quadrupole and quadrupole–
quadrupole interactions should be added to account for the molecular planarity and its
orientations. In that case, an open question of topolgy consists in the elucidation of
the Betti numbers for the configuration space.
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[9] O. Mó, M. Yañez and J. Elguero, J. Chem. Phys. 97 (1992) 6628.

[10] M. Morse, in: Calculus of Variation in the Large, Amer. Math. Colloq. Publ. 18 (1934).
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